ÃÛ¶¹ÊÓƵ

Fuzzy match in Query Service

Use a ‘fuzzy’ match on your ÃÛ¶¹ÊÓƵ Experience Platform data to return the most likely, approximate matches without the need to search for strings with identical characters. This allows for much a more flexible search of your data and makes your data more accessible by saving time and effort.

Instead of trying to re-format the search strings in order to match them, the fuzzy match analyzes the ratio of similarity between two sequences and returns the percentage of similarity. is recommended for this process as its functions are more suited to help match strings in more complex situations compared to regex or difflib.

The example provided in this use case focuses on matching similar attributes from a hotel room search across two different travel agency datasets. The document demonstrates how to match strings by their degree of similarity from large separate data sources. In this example, fuzzy match compares the search results for the features of a room from the Luma and Acme travel agencies.

Getting started getting-started

As part of this process requires you to train a machine learning model, this document assumes a working knowledge of one or more machine learning environments.

This example uses Python and the Jupyter Notebook development environment. Although there are many options available, Jupyter Notebook is recommended because it is an open-source web application that has low computational requirements. It can be downloaded from .

Before you begin, you must import the necessary libraries. FuzzyWuzzy is an open-sourced Python library built on top of the difflib library and used to match strings. It uses Levenshtein Distance to calculate the differences between sequences and patterns. FuzzyWuzzy has the following requirements:

  • Python 2.4 (or higher)
  • Python-Levenshtein

From the command line, use the following command to install FuzzyWuzzy:

pip install fuzzywuzzy

Or use the following command to install Python-Levenshtein as well:

pip install fuzzywuzzy[speedup]

More technical information on Fuzzywuzzy can be found in their .

Connect to Query Service

You must connect your machine learning model to Query Service by providing your connection credentials. Both expiring and non-expiring credentials can be provided. Please see the credentials guide for more information on how to acquire the necessary credentials. If you are using Jupyter Notebook, please read the full guide on how to connect to Query Service.

Also, be sure to import the numpy package into your Python environment to enable linear algebra.

import numpy as np

The commands below are necessary to connect to Query Service from Jupyter Notebook:

import psycopg2
conn = psycopg2.connect('''
sslmode=require
host=<YOUR_ORGANIZATION_ID>
port=80
dbname=prod:all
user=<YOUR_ADOBE_ID_TO_CONNECT_TO_QUERY_SERVICE>
password=<YOUR_QUERY_SERVICE_PASSWORD>
''')
cur = conn.cursor()

Your Jupyter Notebook instance is now connected to Query Service. If the connection is successful, no message will display. If the connection failed, an error will display.

Draw data from the Luma dataset luma-dataset

Data for analysis is drawn from the first dataset with the following commands. For brevity, the examples have been limited to the first 10 results of the column.

cur.execute('''SELECT * FROM luma;
''')
luma = np.array([r[0] for r in cur])

luma[:10]

Select Output to display the returned array.

Output
code language-console
array(['Deluxe King Or Queen Room', 'Kona Tower City / Mountain View',
       'Luxury Double Room', 'Alii Tower Ocean View With King Bed',
       'Club Two Queen', 'Corner Deluxe Studio',
       'Luxury Queen Room With Two Queen Beds', 'Grand Corner King Room',
       'Accessible Club Ocean View Suite With One King Bed',
       'Junior Suite'], dtype='<U66')

Draw data from the Acme dataset acme-dataset

Data for analysis is now drawn from the second dataset with the following commands. Again, for brevity, the examples have been limited to the first 10 results of the column.

cur.execute('''SELECT * FROM acme;
''')
acme = np.array([r[0] for r in cur])

acme[:10]

Select Output to display the returned array.

Output
code language-console
array(['Deluxe King Or Queen Room', 'Kona Tower City / Mountain View',
       'Luxury Double Room', 'Alii Tower Ocean View With King Bed',
       'Club Two Queen', 'Corner Deluxe Studio',
       'Luxury Queen Room With Two Queen Beds', 'Grand Corner King Room',
       'Accessible Club Ocean View Suite With One King Bed',
       'Junior Suite'], dtype='<U66')

Create a fuzzy scoring function fuzzy-scoring

Next, you must import fuzz from the FuzzyWuzzy library and execute a partial ratio comparison of the strings. The partial ratio function allows you to perform substring matching. This takes the shortest string and matches it with all substrings that are of the same length. The function returns a percentage similarity ratio of up to 100%. For example, the partial ratio function would compare the following strings ‘Deluxe Room’, ‘1 King Bed’, and ‘Deluxe King Room’ and return a similarity score of 69%.

In the hotel room match use case, this is done using the following commands:

from fuzzywuzzy import fuzz
def compute_match_score(x,y):
    return fuzz.partial_ratio(x,y)

Next, import cdist from the SciPy library to compute the distance between each pair in the two collections of inputs. This computes the scores among all pairs of hotel rooms provided by each of the travel agencies.

from scipy.spatial.distance import cdist
pairwise_distance =  cdist(luma.reshape((-1,1)),acme.reshape((-1,1)),compute_match_score)

Create mappings between the two columns using the fuzzy join score

Now that the columns have been scored based on distance, you can index the pairs and retain only matches that scored higher than a certain percentage. This example only retains pairs that matched with a score of 70% or higher.

matched_pairs = []
for i,c1 in enumerate(luma):
    idx = np.where(pairwise_distance[i,:] > 70)[0]
    for j in idx:
        matched_pairs.append((luma[i].replace("'","''"),acme[j].replace("'","''")))

The results can be displayed with the following command. For brevity, the results are limited to ten rows.

matched_pairs[:10]

Select Output to see the results.

Output
code language-console

[('Deluxe Room, 1 King Bed', 'Deluxe Room - One King Bed'),
 ('Standard Room, Lagoon View', 'Standard Room With Ocean View'),
 ('Standard Room, Lagoon View', 'Standard Room Dolphin Lagoon View'),
 ('Deluxe Room, 2 Queen Beds', 'Deluxe Room - Two Queen Beds'),
 ('Deluxe Room, 2 Queen Beds', 'Deluxe Room - One King Bed'),
 ('Deluxe Room, 1 King Bed', 'Deluxe Room - One King Bed'),
 ('Deluxe Room, 1 King Bed', 'Deluxe Room - One King Bed'),
 ('Premier Room, 1 King Bed', 'Royal Club Premier Room - One King Bed'),
 ('Deluxe Room, Corner', 'Deluxe Room (Non Refundable)'),
 ('Deluxe Suite', 'Corner Deluxe Studio')]

The results are then matched using SQL with the following command:

matching_sql = ' OR '.join(["(e.luma = '{}' AND b.acme = '{}')".format(c1,c2) for c1,c2 in matched_pairs])

Apply the mappings to do fuzzy join in Query Service mappings-for-query-service

Next, the high-scoring matching pairs are joined using SQL to create a new dataset.

:
cur.execute('''
SELECT *  FROM luma e
CROSS JOIN acme b
WHERE
{}
'''.format(matching_sql))
[r for r in cur]

Select Output to see the results of this join.

Output
code language-console
[('Deluxe Room, 1 King Bed', 'Deluxe Room - One King Bed'),
 ('Standard Room, Lagoon View', 'Standard Room With Ocean View'),
 ('Standard Room, Lagoon View', 'Standard Room Dolphin Lagoon View'),
 ('Deluxe Room, 2 Queen Beds', 'Deluxe Room - Two Queen Beds'),
 ('Deluxe Room, 2 Queen Beds', 'Deluxe Room - One King Bed'),
 ('Deluxe Room, 1 King Bed', 'Deluxe Room - One King Bed'),
 ('Deluxe Room, 1 King Bed', 'Deluxe Room - One King Bed'),
 ('Premier Room, 1 King Bed', 'Royal Club Premier Room - One King Bed'),
 ('Deluxe Room, Corner', 'Deluxe Room (Non Refundable)'),
 ('Deluxe Suite', 'Corner Deluxe Studio'),
 ('Deluxe Suite', 'Deluxe Suite'),
 ('Deluxe Room, 1 King Bed', 'Deluxe Room - One King Bed'),
 ('Club Room, 2 Queen Beds', 'Deluxe Room - Two Queen Beds'),
 ('Business Double Room, 2 Double Beds', 'Double Room with Two Double Beds'),
 ('Business Double Room, 2 Double Beds', 'Double Room with Two Double Beds'),
 ('Business Double Room, 2 Double Beds', 'Double Room with Two Double Beds'),
 ('Business Double Room, 2 Double Beds', 'Business King Room'),
 ('Business Double Room, 2 Double Beds', 'Double Room with Two Double Beds'),
 ('Business Double Room, 2 Double Beds',
  'Business Double Room With Two Double Beds'),
 ('Business Double Room, 2 Double Beds', 'Deluxe Double Room'),
 ('Traditional Double Room, 2 Double Beds',
  'Double Room with Two Double Beds'),
 ('Traditional Double Room, 2 Double Beds',
  'Double Room with Two Double Beds'),
 ('Traditional Double Room, 2 Double Beds',
  'Double Room with Two Double Beds'),
 ('Traditional Double Room, 2 Double Beds',
  'Double Room with Two Double Beds'),
 ('Deluxe Suite, 1 Bedroom', 'Deluxe Suite'),
 ('City Room, City View', 'Room With City View'),
 ('City Room, City View', 'Queen Room With City View'),
 ('City Room, City View', 'Club Level King Or Queen Room with City View'),
 ('Club Room, Premium 2 Queen Beds', 'Club Premium Two Queen'),
 ('Club Room, Premium 2 Queen Beds', 'Premium Two Queen'),
 ('Deluxe Room, Lake View', 'Deluxe King Or Queen Room with Lake View'),
 ('King Room, Suite, 1 King Bed with Sofa bed', 'King Room'),
 ('King Room, Suite, 1 King Bed with Sofa bed', 'King Room'),
 ('King Room, Suite, 1 King Bed with Sofa bed', 'King Room'),
 ('Deluxe Suite, 1 King Bed, Non Smoking, Kitchen', 'Deluxe Suite'),
 ('Junior Suite, 1 King Bed, Accessible (Roll-in Shower)', 'Junior Suite'),
 ('Regency Club, Mountain View', 'Regency Club Ocean View'),
 ('Regency Club, Mountain View', 'Regency Club Mountain View'),
 ('Club Room, 2 Queen Beds', 'Deluxe Room - Two Queen Beds'),
 ('Room, 2 Queen Beds, City View',
  'Queen Room With Two Queen Beds and City View'),
 ('Deluxe Room', 'Queen Room'),
 ('Deluxe Room', 'Deluxe Room (Non Refundable)'),
 ('Deluxe Room', 'Deluxe Room - Two Queen Beds'),
 ('Deluxe Room', 'Deluxe Room - One King Bed'),
 ('Room, Partial Ocean View', 'Room With Ocean View'),
 ('Room, Partial Ocean View', 'Partial Ocean View With Two Double Beds'),
 ('Room, Partial Ocean View', 'Kona Tower Partial Ocean View'),
 ('Room, Partial Ocean View', 'Partial Ocean View Room'),
 ('Room, Partial Ocean View', 'Waikiki Tower Partial Ocean View'),
 ('Premium Room, 1 King Bed', 'Royal Club Premier Room - One King Bed'),
 ('Grand Corner King Room, 1 King Bed', 'Grand Corner King Room'),
 ('Room, 1 King Bed', 'Deluxe Room - One King Bed'),
 ('Room, 1 King Bed', 'Ocean View Room With King Bed'),
 ('Room, 1 King Bed', 'Royal Club Premier Room - One King Bed'),
 ('Deluxe Room, 1 King Bed, Non Smoking', 'Deluxe Room - One King Bed'),
 ('Room, 2 Double Beds, Accessible, Partial Ocean View',
  'Accessible Partial Ocean View With Two Double Beds'),
 ('Room, 2 Double Beds, Accessible, Partial Ocean View',
  'Partial Ocean View Room'),
 ('Room, Ocean View ', 'Room With Ocean View'),
 ('Room, Ocean View ', 'King Or Two Queen Room With Ocean View'),
 ('Room, Ocean View ', 'Standard Room With Ocean View'),
 ('Signature Suite, 1 Bedroom', 'Signature King'),
 ('Room, 2 Queen Beds (Waikiki View)',
  'Queen Room With Two Queen Beds and Waikiki View'),
 ('Deluxe Room', 'Queen Room'),
 ('Deluxe Room', 'Deluxe Room (Non Refundable)'),
 ('Deluxe Room', 'Deluxe Room - Two Queen Beds'),
 ('Deluxe Room', 'Deluxe Room - One King Bed'),
 ('Standard Room, Oceanfront', 'Standard Room With Ocean View'),
 ('Standard Room, Oceanfront', 'Standard Room With Ocean Front View'),
 ('Standard Room, Mountain View (City View - Kona Tower) - No Resort Fee',
  'Standard Room With Mountain View'),
 ('Standard Room, Mountain View (City View - Kona Tower) - No Resort Fee',
  'Standard Room With Ocean View'),
 ('High-Floor Premium Room, 1 King Bed', 'High-Floor Premium King Room'),
 ('Club Room, 1 King Bed', 'Deluxe Room - One King Bed'),
 ('Junior Suite, 1 King Bed with Sofa Bed', 'Junior Suite'),
 ('Junior Suite, 1 King Bed with Sofa Bed', 'Deluxe King Suite With Sofa Bed'),
 ('Deluxe Room, City View', 'Queen Room With City View'),
 ('Deluxe Room, City View', 'Club Level King Or Queen Room with City View'),
 ('Room, 1 King Bed', 'Deluxe Room - One King Bed'),
 ('Room, 1 King Bed', 'Ocean View Room With King Bed'),
 ('Room, 1 King Bed', 'Royal Club Premier Room - One King Bed'),
 ('Room, 2 Double Beds, Partial Ocean View', 'Kona Tower Partial Ocean View'),
 ('Room, 2 Double Beds, Partial Ocean View', 'Partial Ocean View Room'),
 ('Room, 1 Queen Bed, City View',
  'Queen Room With Two Queen Beds and City View'),
 ('Room, Ocean View', 'Room With Ocean View'),
 ('Room, Ocean View', 'King Or Two Queen Room With Ocean View'),
 ('Room, Ocean View', 'Standard Room With Ocean View'),
 ('Standard Room, Partial Ocean View (Kona Tower) - No Resort Fee',
  'Partial Ocean View Room'),
 ('Standard Room, Partial Ocean View (Kona Tower) - No Resort Fee',
  'Standard Room With Ocean View'),
 ('Standard Room, Partial Ocean View (Kona Tower) - No Resort Fee',
  'Standard Room With Ocean Front View'),
 ('Standard Room, Ocean View (Waikiki Tower) - No Resort Fee',
  'Standard Room With Ocean View'),
 ('Standard Room, Partial Ocean View (Waikiki Tower) - No Resort Fee',
  'Standard Room With Ocean View'),
 ('Standard Room, Partial Ocean View (Waikiki Tower) - No Resort Fee',
  'Standard Room With Ocean Front View'),
 ('Regency Club, Ocean View',
  'Accessible Club Ocean View Suite With One King Bed'),
 ('Regency Club, Ocean View', 'Regency Club Ocean View'),
 ('Regency Club, Ocean View', 'Regency Club Mountain View'),
 ('Standard Room, Mountain View (Scenic)', 'Standard Room With Mountain View'),
 ('Standard Room, Mountain View (Scenic)', 'Standard Room With Ocean View'),
 ('Room, 1 Queen Bed', 'Deluxe Room - Two Queen Beds'),
 ('Double Room', 'Luxury Double Room'),
 ('Double Room', 'Double Room with Two Double Beds'),
 ('Double Room', 'Queen Room'),
 ('Double Room', 'Double Room with Two Double Beds'),
 ('Double Room', 'Double Room with Two Double Beds'),
 ('Double Room', 'Double Room with Two Double Beds'),
 ('Double Room', 'Business Double Room With Two Double Beds'),
 ('Double Room', 'Deluxe Double Room'),
 ('Club Room, 1 King Bed', 'Deluxe Room - One King Bed'),
 ('Premier Twin Room', 'High-Floor Premium King Room'),
 ('Premier Twin Room', 'Premier King Room'),
 ('Premier Twin Room', 'Premier Queen Room With Two Queen Beds'),
 ('Premier Twin Room', 'Premium King Room With Free Wi-Fi'),
 ('Premium Room, 1 Queen Bed', 'Premium Two Queen'),
 ('Premium Room, 2 Queen Beds', 'Premium Two Queen'),
 ('Deluxe Room, 1 Queen Bed (High Floor)', 'Deluxe Room - Two Queen Beds'),
 ('Room, 2 Queen Beds, Garden View',
  'Queen Room With Two Queen Beds and Garden View'),
 ('Signature Room, 2 Queen Beds', 'Deluxe Room - Two Queen Beds'),
 ('Signature Room, 2 Queen Beds', 'Signature Two Queen'),
 ('Standard Room, Ocean View', 'Room With Ocean View'),
 ('Standard Room, Ocean View', 'Standard Room With Ocean View'),
 ('Standard Room, Ocean View', 'Standard Room With Ocean Front View')]

Save fuzzy match results to Platform save-to-platform

Finally, the results of the fuzzy match can be saved as a dataset for use in ÃÛ¶¹ÊÓƵ Experience Platform using SQL.

cur.execute('''
Create table luma_acme_join
AS
(SELECT *  FROM luma e
CROSS JOIN acme b
WHERE
{})
'''.format(matching_sql))
recommendation-more-help
ccf2b369-4031-483f-af63-a93b5ae5e3fb